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Recognizing an object generally requires finding correspondences between features of a model
and an image. Since finding corresponding features often requires trying all possible correspon-
dences, recognition systems frequently use correspondences between minimal sets of features
to compute poses of the model. For instance, “alignment” techniques repeatedly hypothesize
correspondences between minimal sets of model and image features, and then use those corre-
spondences to compute model poses, which are used to find other model-image correspondences
(e.g., [5], {10}, [1], [9], (28], [29], [15], [3], [16]-[18], [30], [19]). In addition, “pose clustering”
techniques use every correspondence between a minimal set of model and image features to
compute a model pose, and then count the number of times each pose is repeated (e.g., [2],
[26), {25], [23], {11}, [4]).

For computing poses of 3D objects from 2D images, a model of projection must be selected,
and typically either perspective or “weak-perspective” projection is chosen. Weak-perspective
projection is an orthographic projection plus a scaling, which serves to approximate perspective
projection by assuming that all points on a 3D object are at roughly the same distance from the
camera. For both perspective and weak-perspective projections, the minimal number of points
needed to compute a model pose up to a finite number of solutions is three ([10], [18]). For
point features, then, the problem is to determine the pose of three points in space given three
corresponding image points. When perspective projection is the imaging model, the problem
is known as the “perspective three-point problem” [10]. When weak-perspective is used, I shall
call the problem the “weak-perspective three-point problem.”

A few methods for solving the weak-perspective three-point problem have been suggested in
the past ([20], (8], [17], (18], [12]), and this paper proposes a new method (solution). The major
differences with the new solution is that it motivates and explains the solution geometrically,
and it does not compute a model-to-image transformation as an intermediate step. As will be
demonstrated later, understanding the geometry is useful for seeing under which circumstances
the solution simplifies or breaks, and for analyzing where the solution is stable. Furthermore,
a geometric understanding may be useful for seeing how the solution is affected by error in the
image and the model.

In addition to providing a geometric interpretation, the solution in this paper gives direct
expressions for the three matched model points in image coordinates, as well as an expression
for the position in the image of any additional, unmatched model point. Earlier methods all
require the intermediate computation of a model-to-image transformation. This is meaningful
because, as mentioned above, many alignment-based recognition systems calculate the 3D pose
solution many times while searching for the correct pose of the model. Consequently, avoiding
the intermediate calculation of the transformation could cause such systems to run faster.

To illustrate how significant such a speed-up can be, consider a system that performs 3D
recognition by alignment using point features to generate hypotheses. The input to the system
is a model and an image, and the goal is to identify all instances of the model in the image.
The model is specified by a set of 3D points that can be detected reliably in images, along with
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any number of extended features wh¢se projections can be predicted using points (e.g., line
. segments, some sets of curves,-and eddes represented point-by-point). From the image, a set of

2D points is extracted by a low-level process that looks for points of the type corresponding to
points in the model. The alignment algorithm proceeds as follows:

1. Hypothesize a correspondence between three model points and three image points.
2. Compute the 3D pose of the model from the three-point correspondence.

3. Predict the image positions of the remaining model points and extended features using
the 3D pose.

4. Verify whether the hypothesis is correct by looking in the image near the predicted posi-
tions of the model features for corresponding image features.

This process is repeated until all pairs of triples of model and image (sensed) points have been
tried. For m model points and s sensed points, there are (7)(3)3! distinct pairs of model and
image point triples. Consequently, the running time for the algorithm grows with the cubes
of the numbers of model and image points. Since these numbers can be large, the model and
image points typically are grouped in advance so that only triples of points from the groups
have to be tried (e.g., [23], [21], [18]). This can bring the number of pairs of triples into a
range where the algorithm is practical. Then a “constant-times” speed-up in the innermost
loop of the algorithm, that is, steps 2-4 listed above, could give a substantial improvement in
the overall execution time. As already suggested, the solution given in this paper should make
steps 2 and 3 significantly faster.

From observing previous solutions, the solution given in this paper most resembles Ullman’s
([28], [17]), in that both end up having to solve the same biquadratic equation, although each
derives the biquadratic differently. In this sense, the solution given here is an extension of
Ullman’s, because, unlike Ullman’s solution, it resolves which of the two non-equivalent solutions
to the biquadratic is correct. In addition, this paper explains graphically why the two solutions
arise and to what geometry each corresponds.

There is an intrinsic geometry that underlies the perspective three-point problem; it is
shown in Fig. 1. In the figure, the three model points, My, M, and 17, are being perspectively
projected onto three image points, o, i1, and i3, via lines through the center of projection (center
point), §. The task is to recover 1iig, 771, and 3. The essential information is contained in the
side lengths and angles of the surrounding tetrahedron.

Similar to the perspective case, there is an intrinsic geometry underlying the weak-perspec-
tive three-point problem, shown in Fig. 2. The picture shows the three model points being
projected orthographically onto the plane that contains 77 and is parallel to the image plane,
and then shows them being scaled down into the image. In addition, the picture shows the
model points first being scaled down and then projected onto the image plane. In each case,
the projection is represented by a solid with right angles as shown. The smaller solid is a




Figure 1: Model pomts mo, m;, and mi; undergoing perspective projection to produce
image points i0, i1, and i3. @, b, and ¢ are distances from the center point, P, to the
model points.

scaled-down version of the larger. The relevant information consists of the side lengths of the
solids and the scale factor.

In what follows, first the perspective case is discussed (Section 2). Then I summarize
how to compute 3D pose from three corresponding points under weak-perspective projection
(Section 3). Third the 3D pose solution is shown to exist and be unique, and a geometrical
interpretation is provided (Section 4). Next a direct expression is derived for the image position
of an unmatched model point (Section 5). Then I review earlier solutions to the problem and
present the three most related solutions in detail (Sections 7 and 8). In addition, the new and
earlier solutions are examined and compared in terms of their stabilities (Sections 6 and 9).

2 The Perspective Solution

To see the difference between the perspective and weak-perspective cases, first let us observe
exactly what is required for the perspective three-point problem. As pictured in Fig. 1, I will
work in camera-centered coordinates with the center point at the origin and the line of sight
along the z axis. The distances Ry, Ro3z, and R;3 come from the original, untransformed model
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points. The angles 6y, 692, and 6;; can be computed from the positions of the image points,
the focal length and the center point. To see this, let f equal the focal length, and let the
image points %0, i1, 32 be extended as follows: (z,y) — (z,¥,f)- Then

cos 001 = io . i1, COSOog = io . ig, 605012 = il . iz, (1)

where in general ¥ denotes the unit vector in the direction of ¥. The problem is to determine
a, b, and ¢ given Rg;, Ro3, R12, c088p1, cos8py, and cos ;2. From the picture, we see by the
law of cosines that

a? + b* — 2abcosfy, = R, (2)
a’® +c? —2accosty; = R3, (3)
b2 + C2 — 2bccos 913 (4)

Over time, there have been many solutions to the problem, all of which start with the above
equations. The solutions differ in how they manipulate the equations when solving for the
unknowns. Recently, Haralick et al. reviewed the various solutions and examined their stabili-
ties [13].

Given a, b, and ¢, we easily can compute the 3D locations of the model points:

il
&
-t )
~

-~

o = @ o, y = b, m; = ciz. (5)

If a 3D rigid transformation is desired, it can be determined from the original 3D model points
and the 3D camera-centered model points just computed. A simple method for doing so is
given in Appendix A; for a least-squares solution, see Horn [14].

Although perspective (central) projection is a more accurate model, numerous researchers
have used weak-perspective projection instead (e.g., [24], [20], [7], (8], [25], (28], [29], [21], [22],
[16]-(18], 3], [30], (19], [12]). The justification for using weak-perspective is that in many cases
it approximates perspective closely. In particular, for many imaging situations if the size of the
model in depth (distance in Z) is small compared to the depth of the model centroid, then the
difference should be negligible [25].

There are some advantages to using weak-perspective instead of perspective. In particular,
computations involving weak-perspective often are less complicated. In addition, the weak-
perspective math model is conceptually simpler, since it uses orthographic instead of perspective
projection. Another advantage is that we do not need to know the camera focal length or center
point. Furthermore, there are fewer solutions to deal with—four for perspective and two for
weak-perspective ([10], [18]). It should be understood, however, that finding two solutions
instead of four is only an advantage if the four solutions actually collapse to two; otherwise, at
least two of the solutions are missed.

Lastly, the weak-perspective imaging model can be used without modification to recognize
scaled versions of the same object, since the built-in scale factor incorporates object scale. For




perspective to handle scale, an additional scale parameter must be used. On the other hand,
weak-perspective is unable distinguish objects that differ only in size, since a smaller scale could
mean the object is smaller or further away. Nonetheless, in cases where the weak-perspective
approximation applies, the perspective solution may be unstable in distinguishing different-
sized objects ([27], [29], [18]). In these cases, moving the object further out in depth, that is,
past the point where perspective and weak-perspective projections are essentially equivalent,
will have the same effect in the image as uniformly scaling the object down in size. Since the
perspective solution always distinguishes the depth and size of the object, this suggests that
small variations in the image could lead to very different interpretations for the size as well as
the depth.

In sum, there are significant advantages to using weak-perspective in place of perspective,
and under many viewing conditions the weak-perspective approximation is close to perspective.
As suggested in the introduction, for these situations it would be useful to know how to solve,
using weak-perspective projection, the problems of recovering the 3D pose of a model and
computing the image position of a fourth model point.

3 Computing the Weak-Perspective Solution

This section provides a summary of the results I will derive in the next two sections. Specifically,
it tells how to compute the locations of the three matched model points and the image location
of any additional, unmatched model point.

For reference, the geometry underlying weak-perspective projection between three corre-
sponding points, which was described in the introduction, is shown in Fig. 2. All that is
pertinent to recovering the 3D pose of the model are the distances between the model and
image points. Let the distances between the model points be (Ro1, Ro3, R12), and the corre-
sponding distances between the image points be (do;,do3,dy2). Then the parameters of the
geometry in Fig. 2 are

= "_+_.?_Zﬁ (6)
(hishs) = & (VioRnY ~ iy, oyf(eRen) ~ ) (1)
(B Hs) = {hssha) )

where

a = (Roi+ Roz + Ri3)(—Roy + Roz + R13)(Rox — Roz + R12)(Ro1 + Roa — R1a)  (9)
b = d§(—R}, + R3; + RY;) + d3s(R3, - R, + RY;) + di;(RG, + R3; - RY;) (10)
c (do1 + doa + d12)(—do1 + doz + d12)(dor — doz + d12)(dor + doz — dh3) (11)
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Figure 2: Model points n, m;, and ni; undergoing orthographic projection plus scale
to produce image points 39, 13, and 3.

a:{ 1 if dj, +dj; — di; < $*(Rj, + R3; — RY,), (12)

—1 otherwise.

As the equations show, the solution has a two-way ambiguity except when h; and h; are zero.
The ambiguity corresponds to a reflection about a plane parallel to the image plane. When
h; = hz = 0, the model triangle (the triangle defined by the three model points) is parallel to
the image triangle (the triangle defined by the three image points). As a note, @ and ¢ measure
sixteen times the squares of the areas of the model and image triangles, respectively. Further,
the solution fails when the model triangle degenerates to a line, in which case a = 0; in fact,
this is the only instance in which a solution may not exist (for a discussion of this case, see
Section 4.5). Note, however, that no such restriction is placed on the image triangle; so the
image points may be collinear. Even so, care should be taken since the solution may be unstable
when image points are collinear, when the model points are collinear, or when one of the sides
of the model triangle is paralle] to the image plane (see Section 6).

Next, I give an expression for the image location of a fourth model point. Originally, the
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models points are in some arbitrary model coordinate frame. Also, the image points are in
a camera-centered coordinate frame in which the image serves as the z-y plane. Denote the
original, untransformed model points by 5, to distinguish them from the camera-centered model
points Mm; shown in Fig. 2. Using fy, P, and B;, solve the following vector equation for the
“extended affine coordinates,” (a, 3,7), of ps:

BmB=ap—m)+B8H:-m+1(A-m) x (B -Hm)+m (13)
Given image points ;’0 = (301 yﬂ)» ;'.1 = (21, yl)’ and ;'.2 = (Zg, y2)’ let

Zo1 = T1 — %o, Yo1 = ¥1 — Yo,
To2 = T2 — T, Yoz = Y2 — Yo-

Then the image location of the transformed and projected p; is

(azo1 + Bzoz + 7(vor Hz — Yoz H1) + zo, ayor + Byoz + Y(—zo1 Hz + zoaH1) + %0).  (14)

Lastly, the weak-perspective solution can be used to compute the 3D locations of the model
points in camera-centered coordinates:

- 1

iy = ;(Co, Yo, W) (15)
- 1

my = ;(31, Y1, h1 + w) (16)
- 1

my = ;(22, Y2, by + w), (17)

where w is an unknown offset in a direction normal to the image plane. It is worth noting that
if the 3D rigid transform that brings the model into camera-centered coordinates is desired, it
can be computed from these three camera-centered model points and the original three model
points. The unknown offset w drops out when computing the rotation and remains only in the
z coordinate of the translation, which cannot be recovered. As mentioned in Section 2, a simple
method for computing the transform is given in Appendix A, and a least-squares solution was
given by Horn [14].

4 Existence and Uniqueness of the 3D Pose Solution

In deriving the 3D pose solution, I start with the basic geometry for the weak-perspective three-
point problem, shown in Fig. 2. Fig. 3 shows the smaller solid again with more labels. There
are three right triangles in the solid, from which three constraints can be generated:

hi+ds = (sRer)? (18)
h3+dy; = (sRoa)’ (19)
(h1 - ha)* +d}; = (sRy3)? (20)




hy

h

Figure 3: Smaller solid representing orthographic projection plus scale of three model
points into an image.

It should be pointed out that the distances Rg1, Roz, R12, do1, doz, d12 and the scale factor s
are all positive, but the altitudes h;, h; along with H;, H; are signed. Since h; and h; are
signed, having “h; — h2” in the third equation is an arbitrary choice over “h; + h3”; it was
chosen because, when hy and hg are positive, it directly corresponds to the picture in Fig. 3.

Multiplying the third equation by —1 and adding all three gives

2h1hy = s*(RG; + R3; — RY;) — (dgy + dg; — di;)-

Squaring and using the first two equations again to eliminate h} and k3, we have

2
4(s*R3, — d3,)(s*Rj, - d3y) = (32(th>1 + R3; - Ri;) — (dj, + dj; - d‘f‘z)) ) (21)
which leads to a biquadratic in s (for details see Appendix B):
as* - 2bs? +c =0, (22)

where

a = 4R},R3, - (R}, + R}, - R},)?
= (Ro1+ Roz + R12)(—Ro1 + Roaz + R13)(Ro1 — Roz + R12)(Ror + Roz — R12)

b = 2R3dj,; +2R},d3, — (RS, + R3; — R1;)(d3, + dj, — d7p)
d3,(-R3, + R3, + R,) + &,(R3, — R, + RY;) + di(RY, + RS, — RY)

4d3,d3; ~ (d§; + d§; ~ d3,)?
(dox + doz + d13)(—dor + doz + di3)(do1 — doz + d1r2)(dor + doz — di3)

This biquadratic is equivalent to the one originally derived by Ullman. But Ullman made no
attempt to interpret or decide among its solutions, which will be done here.

o
|
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To prove existence and uniqueness, the biquadratic’s solutions must be examined. We are
interested only in positive, real solutions for s, the scale factor. In general, the positive solutions
of the biquadratic are given by

Y LE SR (23)
a

Depending on the radicands, there will be zero, one, or two real solutions. Particularly, we
are interested in whether each number of solutions can arise, and, if so, to what the solutions
correspond geometrically.

To begin, let us determine the signs of a, b, and ¢. In _I:‘ig. 2, let ¢ denote the angle between
™, — rig and My — Mg, and let 1 be the angle between i; — t9 and i3 — iy. Notice by the law
of cosines that

a = A4R3 R2, — (2Ro1Ro; cos ¢)?
4(Roy Rz sin ¢)? (24)

o
i

2R3,d3; + 2R3,d5; — (2Ro1Roz cos $)(2doydoz cos 1)
2(R12)1¢itz)z + R33d31 — 2Ro1Ro3do1do; cos ¢ cos ¢) (25)

¢ = 4d3,d3; — (2dgydo; cos ¥)?
4(do1doz sin )? (26)

Further, %RmRoz sin @ equals the area of the model triangle, so that a measures sixteen times
the square of the area of the model triangle. Analogously, ¢ measures sixteen times the square
of the area of the image triangle.

In what follows, I assume that the model triangle is not degenerate, that is, not simply a
line or a point. This situation is the only time the solution is not guaranteed to exist. (For
a discussion of this case see Section 4.5.) Note that this assumption implies that a # 0 and

¢ #0.

From Equations 24 and 26, clearly a > 0 and ¢ > 0. From Equation 25, it is straightforward
to see that b > 0:

b = 2(R3,d3; + R3,d5, — 2Ro1Rozdordo; cos ¢ cos )
> 2(R3,d3, + R3;d3, — 2Ro;Ro3do1doz), sincecosd < 1, cosy < 1
= 2(Roidos — Rozdon)*
>0

Returning to Equation 23, Appendix E shows that # — ac > 0. From this fact and that
a>0,b> 0, and ¢ > 0, we can derive that there are in general two solutions for s with a single

9




special case when 5% — ac = 0, which can be seen as follows:

B> —ac>0 == b+ Vb2 —ac>0, sinceb>0and ac>0
b+ Vb2 — ac
a

>0, sincea>90

Hence

which gives one or two solutions for the biquadratic, depending on whether b? — ac is positive
or equal to zero.

Next, I show that of the two solutions for the scale, exactly one of them is valid, that is, cor-
responds to an orthographic projection of the model points onto the image points. Furthermore,
the other solution arises from inverting the model and image distances in Fig 2. In addition,
there being one solution for scale corresponds to the special case in which the model triangle is
parallel to the image plane. The following proposition, which is proved in Appendix C, will be
useful in establishing these claims.

Proposition 1: Let
b— Vb —ac b+ Vb2 - ac
8y = \| ————— 83 = \| —— . (27)
a a
Then
doy doz
81 < —,— <. 28
'= Rot’ Roa ? (28)

4.1 The true solution for scale
Here it is shown that exactly one of the two solutions for scale can satisfy the geometry shown in

Fig. 2, and it is always the same one. If the two solutions are the same, then both solutions can
satisfy the geometry (this case is discussed in Section 4.3). As will be seen, the valid solution is

Note that proving this statement establishes the existence and uniqueness of the solution given
in Section 3.

10




In Fig. 2, (sRp)? — d3, = h3 > 0 and (sRo3)? — d3;, = h3 > 0, which implies that any
solution s for scale satisfies

doy . i°£<

—<s and

Ry, Roz ~ 5

Consequently, Proposition 1 implies that s, is the only possible solution. Still, the question
remains whether s, is itself a solution; the fact that it satisfies the biquadratic (Equation 22)
is not sufficient since the steps used to derive the biquadratic from Equations 18-20 are not
always reversible due to the squaring used to obtain Equation 21.

Next, I show that s, is indeed a solution by giving an assignment to the remaining variables
that satisfies the constraints in Equations 18-20. Since (sRo1)? — d3, > 0 and (sRoz2)* —d3, > 0,
we can set k3 = (sRg1)? — &3, and k3 = (sRo3)? — d3,, which immediately give Equations 18
and 19. Furthermore, we know s satisfies Equation 22, or, equivalently, Equation 21. Substitute
h} and h} into the left-hand side of Equation 21:

2
4hih} = (32(331 + R3; ~ Riy) — (dfy +dg; - diz)) .
which is the same as

+2hihy = s*(R§, + Ry, — RY;) — (djy + df; — diy).

At this point, we are free to choose the signs of h; and hj. In particular, let the sign of A,
watch the sign on the left-hand side so that

2hyh; = s*(R3, + RY; — RY;) - (dg; + dj; — di,). (29)
Once this choice is made, we are forced to choose the sign of h; to make the sign of the left-hand
side consistent with the right-hand side. In particular, let o be the sign of h;. Then unless the
right-hand side is 0,

a:{ 1 if s%(d, +dj, — di;) < Ry, + R, — Ri,
-1 if 83(d3, + d3; — d};) > R}, + R}, — RY,.

On the other hand, if s?(R3; — R3, — R3;) = d3, — d3, — d3,, then Equation 29 implies h; or
h; is 0, so that the sign of h; is not forced and so is arbitrary. Having chosen the sign of h,,
substituting h and A} into the right-hand side of Equation 29 gives

2hhs = At + b3 — (s R}, - d,),
or

(h1 - hz)z = 32322 - dgz’

11




mo rdo,

Figure 4: Geometrically interpreting the inverted solution for scale

which is Equation 20.

Returning to the signs of k; and hj, there is two-way ambiguity in the sign of A, which
imposes the same two-way ambiguity on the pairs (h;, ;) and (H;, H;). As can be seen in
Fig. 2, the ambiguity geometrically corresponds to a flip of the plane containing the space points
Mg, 11, and my. The flip is about a plane in space that is parallel to the image plane, but
which plane it is cannot be determined since the problem gives no information about offsets
of the model in the z direction. Due to the reflection, for planar objects the two solutions are
equivalent, in that they give the same image points when projected. On the other hand, for
non-planar objects the two solutions project to different sets of image points.

There is a special case, as mentioned above, when the sign of h; is arbitrary relative to the
sign of h;. In this case, the right-hand side of Equation 29 is zero, and this implies that A, or
h; is zero also. Looking at Fig. 2, geometrically what is occurring is that one of the sides of the
model triangle that emanates from 7ig lies parallel to the image plane, so that the reflective
ambiguity is obtained by freely changing the sign of the non-zero altitude.

4.2 The inverted solution for scale

Of the two solutions for scale that satisfy the biquadratic, we know that one of them
corresponds to the geometry in Fig. 2, but what about the other? Using a similar argument to
that used to prove s; is a solution for the weak-perspective geometry, we can infer a geometric
interpretation for s;. Consider, then, s = s;. The interpretation I will derive satisfies the
equations,

H} + R}, = (rda)? (30)
H} + R} = (rdy)’ (31)
(Hy- H:)’ + RY; = (rdu)?, (32)

where r = 1, Observe that r = ;1‘- and sz have similar forms (see Equation 27):

12




Figure 5: Geometrically interpreting the inverted solution for scale

LA AT ’c’"“‘. (33)

To begin the derivation, Proposition 1 gives that d3, — (sRq1)* > 0 and d2; — (sRez)? > 0,
which implies we can set h] = d3, —(sRo1)® and h3 = d3,—(sRo;)?. Dividing through by s? gives
Equations 30 and 31. As before, since s satisfies Equation 22 and, equivalently, Equation 21,
we can substitute into Equation 21 with 2} and AJ to obtain

(k1 = ha)* = d}; - s7RY;,

where the sign of h; relative to h, is 1if d3, +d3, —d3, > s?(R3, + R}, - R3,), and —1 otherwise.
Dividing through by s? gives Equation 32, and so the derivation is completed.

Geometrically, Equation 30 forms a right triangle with sides H; and Ry;, and hypotenuse
rdg1. Analogously, Equations 31 and 32 imply right triangles as well. The interpretation is
displayed in Fig. 4. Another way to see what is occurring geometrically is to note that the roles of
image and mode] distances from Equations 18-20 are inverted in Equations 30-32. In effect, what
is happening is that instead of scaling down the model triangle and projecting it orthographically
onto the image triangle, the image triangle is being scaled up and projected orthographically
onto the model triangle, that is, projected along parallel rays that are perpendicular to the
model triangle. This interpretation is shown in Fig. 5 as a rotated version of Fig. 4.

4.3 Model triangle is parallel to the image plane
The two solutions for the scale factor are the same when 52 —ac = 0, and here I demonstrate that

geometrically this corresponds to the plane containing the three model points being parallel to
the image plane. Before proving this, let us establish the existence of the solution for scale in
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this special case of b2 — ac = 2. Looking at Equation 23,

B¥-a=0 = btvVh¥P-ac=b

\/;
= 8§ = 4/-
a

is a solution to the biquadratic since a > 0 and b > 0.

Appendix D shows that b — ac = 0 exactly when ¢ = t9 or ¢ = 9 + x and ﬁ-\; = ﬁ:
Using this result and Equations 24 and 26,

u\/E: [Ve_ [Mndusingl _ dn _ don 34)
a va |Ro1Rozsin®| Ror Roa

= h=1+/(sRn)’-d};, =0
= /(sRea)? - d3; = 0.

Thus b* — ac = 0 only if the model triangle is parallel to the image plane.

Conversely, if the model triangle is parallel to the image plane, it must be that ¢ = ¢.
Further, in this case h; = h; = 0, so that

= G _ don
*= Ra  Ro’ (35)

which from Appendix D implies that % — ac = 0.

Since the two solutions are the same, we know that s; = 82 = % Notice in Figs. 3 and 4
that the geometric interpretations for the two solutions for scale collapse to the same solution
when hy = h; = H;y = H; = 0 and s = 2. As a result, when there is one solution for scale,
there is also one solution for (hy, ;) and (Hl,Hg), albeit (0,0).

4.4 Model triangle is perpendicular to the image plane

The situation where the model triangle is perpendicular to the image plane is of interest since
the projection is a line. Note, however, that the solution given earlier makes no exception for
this case as long as the model triangle is not degenerate. As for what happens in this case,
since the image triangle is a line, we know ¥ = 0 = ¢ = 0 => Equation 23 becomes

=\/"if‘7= 0, @ (36)
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Figure 6: Special case where model triangle is a line. The repeated labels correspond
to two different solutions for the position of the model that leave sm; projecting onto
i3. For both solutions sm; projects onto the same image point.

As shown above, of the two solutions for scale, the true one is \/ % and the inverted one is 0.

To see why the inverted solution is zero, recall that the solution can be viewed as scaling
and projecting the image triangle onto the model triangle, using for scale r = %, which in this
case does not exist. Since the image triangle is a line, graphically this amounts to trying to
scale a line so that it can project as a triangle, which is not possible.

4.5 Model triangle is a line

This is the one case where the solution for the scale fails, and it fails because a, which is
a measure of the area of the model triangle, is zero. Despite this fact, we can determine
when a solution exists. First, we know that the image triangle must be a line as well. To
see if this condition is enough, consider looking for a 3D rotation and scale that leaves sm,
orthographically projecting onto i; as in Fig. 6. Observe that every such rotation and scale
leaves sm; projecting onto the same point in the image. This means is that for a solution to
exist, it must be that

dor _ doz
Roy  Ros’

Even when the image triangle is a line, this in general is not true. When it is true, there is an
infinity of solutions corresponding to every scaled rotation that leaves sm; projecting onto i;.

Another way to look at this situation is to notice that the model triangle being a line when
using the true solution is analogous to the image triangle being a line when using the inverted
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solution, where the roles of the model and image triangles are reversed. As discussed in the
previous section, the image triangle is a line when the model triangle is perpendicular to the
image plane. The analysis there reveals that for the inverted solution the scale factor r is
undefined, which means that here the true solution for the scale factor s is undefined as well.

4.6 Summary

Our goal was to determine the three unknown parameters of the geometry displayed in Fig. 3,
namely s, h;, and h;. The figure gave three constraints (Equations 18-20), from which a
biquadratic in the scale factor s was derived. The biquadratic always has two positive solutions,
and its coefficients, a, b, and ¢, are all non-negative. Of the two solutions, Section 4.1 showed
that one and only one can satisfy the three constraints, and that solution is s = s; from
Proposition 1 (see Equation 27). Given s, there are two pairs of valid assignments for k, and
hz. They correspond to reflecting the plane of the three matched model points about any plane
paralle] to the image; all planes parallel to image plane are equally-good. This proved that the
solution for 3D pose exists and is unique up the reflective ambiguity.

In Section 4.2, Proposition 1 was used to infer the geometry that gives rise to the other
solution to the biquadratic, namely s = sy (Equation 27). This solution, which is illustrated in
Fig. 5, is obtained by inverting the roles of the model and image points in Fig. 3. The difference
with the inverted solution is that the image points are being scaled and then orthographically
projected onto the model points, instead of the reverse. The inverted geometry satisfies three
constraints, Equations 30-32, that parallel the true constraints in function and form. Similarly,
the expression for the scale factor of the inverted solution, r = ﬁ {Equation 33), parallels the
expression for the true scale factor, s = s,.

Three special cases were discussed next, one in which the plane of the matched model points
is parallel to the image plane (Section 4.3), one in which it is perpendicular to the image plane,
or, equivalently, in which the matched image points are collinear (Section 4.4), and one in which
the matched model points are collinear (Section 4.5). The first case is the one and only situation
in which the two solutions collapse to the same one, and in this case hy = h; = 0. In addition,
this situation is exactly where the two solutions to the biquadratic are the same; this is seen
geometrically by looking at Figs. 3 and 4 with h,, hs, Hy, and H; all zero and s = 8, = s, = 1.

In the case where the matched image points are collinear, the solution for 3D pose is still
valid. It is interesting to note, however, that the inverted solution for the scale factor does not
exist. Yet the inverted solution for the scale does exist when the model points are collinear, but,
in this case, the true solution does not. Section 4.5 determined that when the model points are
collinear a solution for 3D pose may still exist, but if and only if a further constraint is satisfied.
The section concludes by giving the constraint and describing how it arises geometrically.

16




5 Image Position of a Fourth Model Point

To compute the position in the image of a fourth model point, I first use the solution from
the previous section to compute its 3D position in camera-centered coordinates. By so doing,
I can project the camera-centered model point under weak-perspective and obtain the image
position without having to calculate a model-to-image transformation. Let the image points be
%0 = (zo0,¥%), 11 = (21,), and i3 = (z3,¥3). Given s, h;, ha, we can invert the projection to
get the three model points:

- 1

my = ;(20, Yo, w)
- 1

my = ;(ch Y1y hl + w)
- 1

m; = ;(22, Y2, ha + w),

where w is an unknown offset in a direction normal to the image plane.
Given three 2D points, ¢o, ¢1, and ¢, a fourth 2D point ¢3 can be uniquely represented by

its “affine coordinates,” (a, 3), which are given by the equation
@ = a(di - g) + B(§2 - ) + %

Given three 3D points, py, P1, and B3, this representation can be extended to uniquely represent
any other 3D point p3 in terms of what I shall call its “extended affine coordinates,” (a, 3, 7),
as follows: '

p=ap-m+BRm-m+1A-B)x(Hm-K)+w (37)
Let
To1 =21 — 2oy Yo1 = V1 — Yoo
Zo3 = ¥2 — 20y Yoz = ¥2 — ¥%o.

Then, using the three model points with py = iy, p3 = m,, and p; = m,

- -y l
h—Pp = ;(301’ Yo1, hl) (38)

g d 1
p-m = ;(3029 Yoz, ha) (39)

- e g -y 1
A-mx(Hm-B) = F(Wl’h — Yozh1, Zozh1 — Zo1h2, Zo1Yoz — Zozvo1) - (40)

Next, substitute Equations 38-40 into Equation 37 to get the three-space location of the fourth
point:

—

1 1
3 = ;a(zonvonhn)‘*;ﬁ(zoz,llo:,hz)
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1 1
+7 ;(yoxhz — Yozh1, —201h2 + zo2h1, 201Y02 — Zo2¥01) + ;(zo, Yo, w)

1 ha — yor b
= ;(0201 + Bzoz + 7*“—23—%2'—1- + 2o,

—zo1hy + zg2h
ayor + Byoz + T —= : 22 4 yo,

ahy + Bhy + 7201.1102 : To3Y01 + w) (41)

To project, first apply the scale factor s:

- hs — yozh
smy = (azoy + Bzoz + 7-3!2-2—#—1 + zo,

—zo1hs + zo2h
ayor + Byoz + 7 —= 23 271 4 %,

Zo1Y02 — ZoaYo1

ah; + Bhy + 7 + w) (42)

Let II represent an orthogonal projection along the z axis. Then project orthographically to
get the image location of the fourth point:
Ii(sni3) = (azo1+ Bzoz +7(vorHa — yoa H1) + Zo»

ayo1 + Byoz + 1(~ze1 Hz + 2oz Hy) + yo) (43)
Notice that the unknown offset w has dropped out. This expression computes the image position
of p; from its extended affine coordinates, from the image points, and from H; and H,, the
altitudes in the weak-perspective geometry. There are no intermediate results about the actual
3D pose stored along the way, and as a result, this computation should be very efficient.

Nonetheless, it should be kept in mind that Hy and H; depend on the specific imaging geometry;
that is, they depend on the pose of the model.

It may be worthwhile to observe that Equation 43, the expression for the fourth point, can
be rewritten as a weighted sum of the three image points:

II(sni3) = (azo1+ Bzoa+ 7(vorHz2 — yoa2 H1) + 2o,
ayor + Byoz + 7(—z01 Ha + 2oaH1) + ¥0)

= (az1 +vHath,an — THaz1) - (azo + YHapo,ay0 — 7Haze) +

(Bza — YH1y3,By2 + 7H123) ~ (Bzo — YH1%0,By0 + TH120) +
(30’ yO)

1-a-8 ~,(H,-H,)][zo]+
~y(H1-H;) l1-a-B

[ | L ]3]
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Let Ry represent a 2D rotation matrix that rotates by an angle 8. Then

Ti(sni3) = 6oRag o + S1Rey i1 + &2Re, 1, (44)
where
o = (1-a-B)+(7(Hy - Hy)) (45)

8 vad + (1Hp)? (46)
6 = B+ (vH)? (47)
cosfp = ‘ﬁ:—‘-ﬂ sin @y = i@f;ﬂ

cosb = & sin@; = ;}!1 (48)
cos 8y = sin@; = lg‘l

Thus, we can view the computation as a 2D rotation and scale of each image point separately
followed by a sum of the three. It is important to keep in mind, however, that the rotations
and scales themselves depend on the image points, because of H; and H,.

When the model is planar, the form of Equation 44 facilitates understanding the effects
of error in the image points. Error in the locations of the matched image points leads to
uncertainty in the image location of the fourth model point. Suppose that the true locations of
the matched image points are known to be within a few, say ¢;, pixels of their nominal locations,
for i = 0,1,2. Let 7; and & be the true and nominal locations of an image point, for i = 0,1, 2.
Then, for some &, ip = & + €0, *-2re || & ||= €0, and similarly for i; and i;. Then

(sriis) = boRagio +61Rey 11 + 83Rey 13
= (603.‘.&6 + sln‘lc-i + 623-03‘5) + (JOROOCT) + Jln‘l e~l + 523-0355)

When the fourth point is in the plane of the first three, v = 0, so that the scales, §, §,, and &3,
and 2D rotations, Ryys R‘l , and R.z , are all constant (see Equations 45-48). This means that
the first term in parentheses is just the nominal image location of the fourth model point. Since
€9, €1, and €3 move around circles, the 2D rotations in the second term can be ignored. Further,
since these error vectors move independently around their error circles, their radii simply sum
together. Therefore, the region of possible locations of the fourth model point is bounded by a
circle of radius §pep + 81€; + 82¢3 that is centered at the nominal point. By plugging v = 0 into
Equations 45-47, we get that

bo=1-a-8l, & =lal, &=]|Bl,

Assuming €9 = ¢; = €3 = ¢, this implies that the uncertainty in the image location of a fourth
point is bounded by a circle with radius (|1 — a — 8| + |a| + |B])e and with its center at the
nominal point, which repeats the result given earlier by Jacobs [19).

Although the non-planar case clearly is more complicated, since the scales and 2D rotations
are no longer constant, Equation 44 may prove useful for obtaining bounds on the effects of
error in this situation as well.
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6 Stability of the 3D Pose Solution

In numerical computations, it is well-advised to determine whether a computation is stable,
since, if not, it could produce inaccurate results. A computation is unstable if any roundoff
error can propagate and magnify such that the true answer is significantly altered. The most
common source of roundoff error is known as catastrophic cancellation, where two numbers of
nearly equal magnitudes and opposite signs are summed. In fact, catastrophic cancellation is
the only way a sudden loss of precision can occur [31]. Otherwise, in general precision can be
lost Ly an accumulation of small errors over several operations.

In the 3D pose solution, there are a few subtractions of positive numbers to be wary of. In
computing A, and A3 from s (Equation 7), the values of k; and k3 may have little precision if
cancellation occurs in the radicands, in which case h; or h; will be small relative to its range
of values. As discussed at the end of Section 4.1, h; or A; is zero when one of the sides of the
model triangle that emanates from g lies parallel to the image plane.

The calculation of &, and A3 can also be unstable if s is inaccurate. Looking at Equation 6
and recalling that a, b, and ¢ are non-negative, catastrophic cancellation can only occur in the
inner radicand. Even if it does, this is not a problem, since the result of the square root would
be negligible when added to b.

Another way for s to become inaccurate is if the value of a, b, or ¢ in Equation 6 is obtained
with little precision. For a and ¢, Equations 9 and 11 show in parentheses one of the sides of
a triangle being subtracted from the sum of the other two; therefore, catastrophic cancellation
may occur when the triangle is nearly a line. Equation 10 shows that cancellation may occur
in computing b if either the terms in parentheses or the total sum approaches zero relative to
their ranges of values. From the law of cosines, the terms in parentheses are near zero when
some angle of the model triangle is small. From Equation 25, the total sum, i.e., b, is small
only if certain angles in the model and image triangles are small also. This says we should be
careful of b in the same circumstances in which we are careful of a and ¢, namely, when the
model or image points are nearly collinear.

To conclude, the parameters s, h, and h; (or s, H;, and H;) are prone to instability when
the matched model or image points are almost collinear, and, additionally, H, or H3 can be
unstable when one of the vectors from g to m%; or 773 is nearly parallel to the image. In the
latter case, the unstable H; or H; is close to zero. If only one of H; and H; is close to zero,
then the instability can be avoided by re-ordering the matched points to make both H; and
H, large. However, if this is done, the difference H, — H; will be close to zero and may be
imprecise. If both H; and H; are almost zero, which means the model triangle is nearly parallel
to the image, then re-ordering the matched points will not help.

Finally, it is worth observing that much of the instability in the pose solution occurs at
places in which the problem is ill conditioned, that is, places where instability is inherent in
the geometry. For instance, H; was said to be unstable when the vector from iy to m, is
nearly parallel to the image. Geometrically, in this situation a small change in the position of
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i) can cause a large change in the altitude H; (Fig. 2). For the same reason, recovering the
altitude H; is unstable when the vector from 7y to m; is nearly parallel to the image. This
situation would be worse if both vectors emanating from 19 were parallel to the image. By
a similar argument, it is intrinsically unstable to recover the pose when the model points are
nearly collinear, due to there being an infinity of solutions when the model points are exactly
collinear (Section 4.5).

This suggests that recognition systems like alignment and pose clustering should give special
attention to situations where the model triangle is almost a line and where the model triangle
being viewed straight on. These cases could be avoided by checking if the model points are
nearly collinear or if the corresponding angles between the model and image points are very
close. For the latter case, the suggestion does not apply if alignment is being used to recognize
planar models. This is because, if Equation 14 is used, error in H; or H; has no effect on the
image locations of points in the plane, since for these points v = 0.

7 Review of Previous Solutions

There have been several earlier solutions to the weak-perspective three-point problem, notably
by Kanade and Kender [20], Cyganski and Orr ([7], [8]), Ullman ([28)], [17]), Huttenlocher
and Ullman ({16}, [18], [29]), and Grimson, Huttenlocher, and Alter [12]. Al the previous
solutions compute the 3D pose by going through a 3D rigid transformation or a 2D affine
transformation relating the model to the image. A 2D affine transform is a linear transform
plus a translation, and it can be applied to any object lying in the plane. All but Ullman’s
and Grimson, Huttenlocher, and Alter’s solutions compute an affine transformation between
the three model and image points. Also, all but Kanade and Kender’s solution compute a
model-to-image rigid transformation, either via a rotation matrix or via Euler angles.

Not all of the solutions directly solve the weak-perspective three-point problem. The earliest
solution, which was given by Kanade and Kender in 1983, applies Kanade’s skewed-symmetry
constraint to recover the 3D orientation of a symmetric, planar pattern [20]. More precisely,
Kanade and Kender showed how to compute the 3D orientation of the plane containing a
symmetric, planar pattern from a 2D affine transform between an image of the pattern and
the pattern itself. To apply this result to the weak-perspective three-point problem, the three
points can be used to construct a symmetric, planar pattern, and a 2D affine transform can be
computed from two sets of three corresponding points. The solution was shown to exist and to
give two solutions related by a reflective ambiguity, assuming that the determinant of the affine
transform is positive.

The remaining methods all concentrate on computing the 3D rigid transform from the model
to the image. In 1985, while presenting a system for recognizing planar objects, Cyganksi and
Orr showed how to use higher-order moments to compute a 2D affine transform between planar
regions ([7], [8]). Given the affine transform, they listed expressions for computing the 3D
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Euler angles from the 2D affine transform!. They did not, however, discuss how they derived
the expressions.

The next method is the solution given by Ullman in 1986 {28], which appeared again in [17)].
The paper included a proof that the solution for the scale factor is unique and the solution for
the rotation matrix is unique up to an inherent two-way ambiguity. (This corresponds to the
ambiguity in Hy, and H;.) But Ullman did not show the solution exists. When it does exist,
Ullman described a method for obtaining the rotation matrix and scale factor.

In 1988, Huttenlocher and Ullman gave another solution, and, in the process, gave the
first complete proof that the solution both exists and is unique (up to the two-way ambiguity)
([16], (18], [29}). Like Kanade and Kender, and Cyganski and Orr, Huttenlocher and Ullman’s
solution relies on a 2D affine transform. The solution itself is based on algebraic constraints
derived from rigidity, which are used to recover the elements of the scaled rotation matrix.

The last solution, which was published this year, was developed by Grimson, Huttenlocher,
and Alter for the purpose of analyzing the effects of image noise on error in transformation
space [12]. Towards this end, the method facilitates computing how a small perturbation in
each transformation parameter propagates to uncertainty ranges in the other parameters.

8 Presentation of Three Previous Solutions

The solutions discussed in the previous section differ significantly in how they compute the
transformation, and, as a result, each one can provide different insights into solving related
problems, such as error analysis in alignment-based recognition and pose clustering. It seems
useful, then, to present the previous solutions in detail, so they conveniently can be referred to
and compared.

The first method presented is Ullman’s solution, which the first part of this paper extended.
After that, I give Huttenlocher and Ullman’s solution. Lastly, I present the method of Grimson,
Huttenlocher, and Alter. I do not present Kanade and Kender’s method nor Cyganski and Orr’s,
because Kanade and Kender did not directly solve the weak-perspective three-point problem,
and Cyganski and Orr did not detail their solution.

It should be pointed out that the presentations here differ somewhat from the ones given
by the original authors, but the ideas are the same. Basically, the presentations emphasize the
steps that recover the 3D pose while being complete and concise. For more details, the reader
is referred to the original versions in the references.

In the following presentations, we are looking for a rigid transform plus scale that aligns
the model points to the image points. In all methods, we are free to move rigidly the three
image points or the three model points wherever we wish, since this amounts to tacking on an
additional transform before or after the aligning one. For example, this justifies the assumption
made below that the plane of the model points is parallel to the image plane.

!The expressions that appear in (7] contain typesetting errors, but are listed correctly in [8).
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For consistency, the same notation as in Sections 3 and 4 is used in the proofs that follow:
Let the model points be Mg, 7%, 172 and the image points be %0, 11, iz, with the respective
distances between the points being Ro;, Rz, and R;; for the model points, and dp;, do3, and
dy2 for the image points.

8.1 Overview

This section provides an overview of the three methods.

Initially, all three methods compute a transformation that brings the model into image
coordinates, such that the plane of the three matched model points is parallel to the image
plane and such that #ig projects onto ig, which has been translated to the origin. The three
methods then compute the out-of-plane rotation and scale that align the matched model and
image points. In so doing, the methods all end up solving a biquadratic equation.

In Ullman’s method, the model and image points are further transformed via rotations
around the z axis to align 77, and #; along the z axis. Then the 3D rotation matrix for rotating
successively around the z and y axes is expressed in terms of Euler angles. This leads to a
series of three equations in three unknowns, which are solved to get a biquadratic in the scale
factor. To get the elements of the rotation matrix, the solution for scale factor is substituted
back into the original three equations.

Instead of further rotating the model and image points, Huttenlocher and Ullman compute
an affine transform between them, which immediately gives the top-left sub-matrix of the scaled
rotation matrix. Then by studying what happens to two equal-length vectors in the plane, a
biquadratic is obtained. The scale factor and the remaining elements of the scaled rotation
matrix are found using the algebraic constraints on the columns of a scaled rotation matrix.

Like Ullman did, Grimson, Huttenlocher, and Alter rotate the model further to align m;
and i;. The desired out-of-plane rotation is expressed in terms of two angles that give the
rotation about two perpendicular axes in the plane. Next, Rodrigues’ formula, which computes
the 3D rotation of a point about some axis, is used to eliminate the scale factor and obtain two
constraints on the two rotation angles. The two constraints are solved to get a biquadratic in
the cosine of one of the angles. Its solution is substituted back to get the other angle and the
scale factor, which can be used directly by Rodrigues’ formula to transform any other model
point.

As mentioned in the introduction, Ullman’s solution is incomplete because it does not show
which of the two solutions for the scale factor is correct; actually, the solution is completed by the
result given in Section 4.1 of this paper. Similar to Ullman’s method, Grimson, Huttenlocher,
and Alter’s solution has the same drawback of not showing which solution to its biquadratic is
correct. Huttenlocher and Ullman, on the other hand, have no such problem because it turns
out that one of the two solutions to their biquadratic is obviously not real, and so it immediately
is discarded.
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8.2 Ullman’s method

This section gives Ullman’s solution to the weak-perspective three-point problem. The main
idea is first to transform the three model points to the image plane and then solve for the scale
and out-of-plane rotation that align the transformed poiuts.

Specifically, the model points first are rigidly transformed to put the three model points in
the image plane with g at the origin of the image coordinate system and 77; — 739 aligned with
the z axis. After rigidly transforming the model points, the resulting points can be represented
by (0,0,0), (£1,0,0), and (Z3,92,0). Similarly, let the image points be rigid transformed to
put 7p at the origin and i; — 7o along the x axis, and let the resulting image points be (0,0,0),
(zlv 0, 0), and (32, Y2, 0)-

Next, we break the out-of-plane rotation into a rotation around the z axis by an angle @
followed by a rotation around the y axis by an angle ¢, as pictured in Fig. 7. The corresponding
rotation matrix is
[ cos¢p 0 sin ¢ 1 0 0
R = 0 1 0 0 cos@® —sinf
| —sing 0 cos¢ 0 sin@ coséd

[ cos¢ singsin sindcosd

= 0 cos @ —sin8 (49)
| ~sing cos¢sind cosdpcosd

After rotation and scale, (0,0,0), (#1,0,0), and (#2,%2,0) become (0,0,0), (z1,0,2), and
(22,2, z2), respectively, where z; and z; are unknown. Thus, we need to find 6, ¢, and s
such that

SR(t-l, 0, 0) = (zl, 0, zl)

sR(£3,92,0) = (22,92, 22)
Expanding the first two rows of R yields three equations in three unknowns:
sT1cosP = z, (50)
stacoshd = 1y (51)
s¥3co8¢ — sasingdsind = 2, (52)

Fig. 7 gives a graphical interpretation of the first two equations. Substituting Equations 50
and 51 along with expressions for sin ¢ and sin# into Equation 52 vields a biquadratic in the
scale factor s:

as* —bs?+c=0, (53)
where

a = &R (54)

b = z}(&H*+ @)+ &1%(23 + yd) — 221205153 (55)

¢ = z}y] (56)
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Figure 7: Interpreting the out-of-plane rotation angles in Ullman’s method. 3

The positive solutions for s are given by

it

In general there can be one, two, or no solutions for s. Ullman makes no further attempt toy-,
determine when or if each solution arises, except to refer to a uniqueness proof he gives earlier

in the paper. The uniqueness proof implies there can be at most one solution for s, but does, .
not say which solution it is or whether it can be either one at different times.

Given s, the rotation matrix R is obtained using cos ¢ = % and cos@ = -j% in Equation 49... -
One difficulty with this is that we do not know the signs of sin @ and sin ¢; this leaves four. -
possibilities for the pair (sin#,sin¢). In his uniqueness proof, Ullman points out that the: .
inherent reflective ambiguity corresponds to multiplying simultaneously the elements ry3, r33,. o
r3;, and r32 of R by —1. In Equation 49, the signs of those elements also are inverted when, -;
both sin § and sin ¢ are multiplied by —1, which, visually, corresponds to reflecting the model
points about the image plane (Fig. 7). Still, we have no way to know which of the two pairs of
solutions is correct. One way to proceed is to try both and see which solution pair aligns the

points.

ol

8.3 Huttenlocher and Ullman’s method i
L.
First, assume the plane containing the model points is parallel to the image plane. Then
subtract out 7 and ig from the model and image points, respectively, to align them at the ,;
origin. Let the resulting model points be (0, 0,0), (#1,#1,0), and (£3, 32, 0), and the resulting
image points be (0,0), (z1,¥1), and (z3,y3). At this point, what is left is to compute the scaled
rotation matrix that brings (23, #1,0) and (£3,%3,0) to (21,1, z1) and (23,3, 23), respectively,
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where z; and z; are unknown. That is, we need
3R(£l’ Y1, 0) = (zlyyh zl)
"R(Z—Za Y2y 0) = (321‘.'/2’ 22)-

Letting lj; = sr11, 12 = srq3, etc., and focusing on the first two rows of the rotation matrix,
we get two sets of equations:

h#ai+hah = = (58)
s+l = 2z (59)
byvii+lpath = n (60)
@z + bz = ya, (61)

Iy I3z
step fails if the determinent, #,§2 — #2%1, equals zero.

which give [ b ha ] , the top-left sub-matrix of the scaled rotation matrix. Note that this

Next, we make a digression to consider what happens to two orthogonal, equal-length vectors
in the plane, €] and ¢é;. Since é; and €; are in the plane, we can apply the sub-matrix just
computed to obtain the resulting vectors, €1’ and €3

&' = [ h L ] é, &' = [ iy ha ] & (62)

lnn I3 In I
When a model is transformed, €1 and €3 undergo a rigid transformation plus scale before
projection. As shown in Fig. 8, after transformation these vectors become €;'+¢;7 and ;' +¢32.
Since a scaled, rigid transform preserves angles and ratios of lengths between vectors, and since
€1-¢62 =0 and || € ||=|| & ||, it must be that
(1’ +a12)- (&' +22) =0

&' Il +ei =l &' || +¢3.

These two equations simplify to

e = ky
A-c3 = k
where
bk = - -& (63)
k= |l&'ll-lla (64)
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Figure 8: Projecting two orthogonal same-length vectors in Huttenlocher and Ullman’s
method.

Substituting for ¢ = -’::: in the second equation leads to a biquadratic in ¢;:
cd—kd -k =0 (65)

The general solution is

1 112 113
C1=ﬂ:\/§ (kg:l: kg+4kg).

Conveniently, the inner discriminant always is greater than or equal to zero. Furthermore, since
4k3 > 0, the real solutions are given by

e = i:‘/-;- (k, +/4 +4k§) : (66)

since otherwise the outer discriminant is less than zero.

These two solutions for ¢, give two corresponding solutions for ¢, which from Fig. 8 can be
seen to correspond to a reflection about the image plane.

The solution for c; does not work when ¢; = 0. In this case,

a=tvVE=t/léall-1& . (67)

This gives two solutions for ¢3, if it exists, which can be seen as follows. Since ¢; = 0, €3 ends
up in the plane, so that that the length of €; is just scaled down by s, whereas the length of
€3 reduces both by being scaled down and by projection. Consequently, || &' |[<|| &’ ||, and,
therefore, c2 exists.
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Given ¢y and ¢z, we can recover two more elements of the scaled rotation matrix. Since €,
and €; are in the plane, we know that sRé) = €3’ + ¢1Z and sRé; = &’ + c2Z. Focusing on the
last row of the scaled rotation matrix, we get the two equations I3; = ¢y and I33 = ¢3.

At this point, we have the first two columns of sR, and, from the constraints on the columns
of a rotation matrix, we can get the last column from the cross product of the first two. In
total, this gives

hh bz Yealnn —crlaz)
sR=\|1ln lz (cahs—cln) (68)

a ¢ Yy —haln)

Since the columns of a rotation matrix have unit length, we know

s=\B 4+ B+l =\ 4+ . (69)

Notice that the ambiguity in ¢; and ¢z inverts the signs of the appropriate elements of the
rotation matrix as discussed in Section 8.2.

8.4 Grimson, Huttenlocher, and Alter’s method

Grimson et al. gave another solution to the weak-perspective three point problem in order to
get a handle on how small perturbations affect the individual transformation parameters.

To start, assume the plane containing the model points is parallel to the image plane. Next,
rigidly transform the model points so that iy projects to i and @, — Mg projects along 1y — %o.
Let IT represent an orthogonal projection along the z axis, and in general let & be the 2D
vector rotated ninety degrees clockwise from the 2D vector ¥. Then the translation is io — Mg,
and the rotation is about Z by an angle ¥ given by

cos Y = Mgy - 01, siny = —r?:OI-i(J,'l.

(see Fig. 9).

At this point, assign g1 = ™My — o, Mgz = Mz — Mo, ;'.olf i1 — o, and igz = ™z — rg.
Also, consider the out-of-plane rotation to be a rotation about ip; by some angle 8 followed by
a rotation about '3}1 by some angle ¢. Let us compute where the vectors 301 and ’%1 project to
after the two rotations and scale. To do this, we use Rodrigues’ formula: Let R; P represent
a rotation of a point § about a direction ¥ by an angle 7. Rodrigues’ formula is

R; p=costp+ (1 —cost)(v-P)o +sinT(v x P). (70)
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P

Figure 9: After the rotation by ¥ in Grimson, Huttenlocher, and Alter’s method, the
plane of the model points is parallel to the image plane, g projects onto 29, and m; —myg
projects along i; — 1p.

Using the formula, we can compute

R.—%’d,n?ﬂ’azm = cosPig; — sin¢Z (11)
-‘;,'-,.éRfm,Oiél = sin@sin ¢ig; + cos iy, + sinf cos ¢2.

Initially, 7729, was rotated about Z to align it with i01- In order for the scaled orthographic
projection of My, to align with ig;, Equation 71 implies that

_ llml 1
|| 701 || cos ¢
_ doy 1
= Rwond (72)
Then
-~ 1
Jnnr‘r‘_’.i "R{.:m "101 = E‘l(u (73)
<L _ ﬂ o . 3 1
aIIR:;é.‘Rr;m‘zm = R cos¢(sm03m¢tm + cos 01y;) (74)

Next, we use the expressions in Equations 73 and 74 to constrain # and ¢ such that g,
projects along 192. When we aligned r7ig; and 19, 792 rotated to R, Mos. Since Mgz has no 7
component (by assumption), we can represent R, nitgg by

Roy cos €30y + Roa sim £igy,
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where £ is a known angle. Consequently, the transformed, projected, and scaled ig;, which
must equal g3, is

slIR:, d,R.'M o( Roz cos 101 + Roz sin {?{}l)
- . R. I : . m. L
= Rog cos f(sIIR‘.J_ R, 0'01) + Roz sin E(.sl'IR.‘.éi .¢Ri01,91°1)

= Ropzcosé (%101) + Rozsin £ (Rm ! ¢(sin9 sin $o; + cos0§§1))
= c‘:;1¢ : - (cos € cos ¢ + sin € sin ¢ sin B)ig; + %%(sm{ cos 0)?6"1.
Similar to Ry, rito2, we can represent 102 as
fo2 = doz coswigy + doy sin wigy,
where w is known. By equating terms we get
:::22(cos£cos¢+ sin £ sin #sinf) = cosdcosw (75)
%%(shfcosa) = cos¢sinw. (76)
These two equations can be solved to get a biquadratic in cos ¢:
sinwcos* ¢ — (12 + 1 — 2t cosw cos §) cos? ¢ + t¥sin’ £ = 0, (77)
where
- i (7%

Since R 770 is aligned with 701, we need cos ¢ to be positive so that r7i; projects in the same
direction as ig;. The positive solutions are given by

1 . .
C03¢ = mﬁ + JV’ bl t2 sm’wsm’f (79)
with
1 2
v= 5(1 + t* — 2t cosw cos§).

This equation gives up to two solutions, but Grimson et al. make no further attempt to show
which solutions exists when, except to say the equation gives real solutions only if » > 0 or

2
coswcos§ < —-;—tt— (80)
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Given ¢, Equations 75 and 76 provide 6:

sinwcos ¢

cosd = rpey (81)
. cos ¢(cosw — tcos§)
sinf tsin€sin¢ (82)

Given any model point 7, we can use the computed angles along with Rodrigues’ formula
to find its image location. In particular, once mqg and ;o have been subtracted out, only the
scale and 3D rotation are left. The scale is given by Equation 72, and, as shown above, the
rotation is

R'..)Ll ,éRaol .0R2¢ * (83)

As with Ullman’s method (Section 8.2), we do not know the signs of sin @ and sin ¢, but only
that inverting boih signs simultaneously corresponds to the reflective ambiguity.

8.5 Summary of the three computations

Here I summarize how each method can be used to compute 3D pose from three corresponding
points. To begin, transform the model and image points so that (1) the model points lie in the
image plane, (2) 7itg and 7, are at the origin of the image coordinate system, and (3) i, — riig
and z; — ip lie along the x axis. Then use one of the three methods to compute the scale factor
and out-of-plane rotation, as follows:

e Ullman’s method

. Use Equations 54-56 to get a, b, and ¢.
. Substitute a, b, and ¢ into Equation 57 to get s.

1
2
3. Calculate cos ¢ = - and cosd = -j%
4
5

. Calculate sin ¢ = /1 — cos? ¢ and sin8 = V1 — cos? 6.

. Construct the rotation matrix R using Equation 49.
¢ Huttenlocher and Ullman’s method

1. Solve Equations 58 and 59 for l;; and [;3, and Equations 60 and 61 for I3; and I;;.
2. Let €3 = (0,1) and é3 = (1,0). (Any orthogonal, equal-length vectors can be used.)
3. Use Equation 62 to get €;' and &3'.

4. Substitute ¢1’ and 3’ into Equations 63 and 64 to get k; and k;.

5. Substitute k; and k; into Equation 66 to get ¢;.
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6. If ¢; # 0, calculate ¢, = ‘2‘ Otherwise get c; from Equation 67.
7. Use Equation 69 to get s.
8. Use Equation 68 to get sR. Divide through by s if R is desired instead of sR.

e Grimson, Huttenlocher, and Alter’s method

1. From the model points, compute Rg;, Ro2 and £, and, from the image points, com-
pute do, dp3, and w.

. Use Equation 78 to get ¢.

. Use Equation 79 to get cos ¢.

. Use Equation 72 to get s.

. Calculate sin¢ = /1 — cos? .

. Use Equations 81 and 82 to get cosf and sin8.

= O O W N

. To transform any point , substitute cos ¢, sin¢, cos 8, sin8, and p into Rodrigues’
formula, Equation 70, to get R5 = R, ¢R«..~o \ oP-
o" *

9 Stability and Comparison of Three Previous Solutions

For computing 3D pose, it is desirable to know how the solutions compare in terms of stability.
To address this issue, let us examine how susceptible the solutions are to catastrophic cancella-
tion [31]. For ease of reference, I will indicate which steps in the pose computation summaries
of Section 8.5 may be unstable.

Ullman’s solution computes s in the same way as this paper does, and, as a result, is unstable
at the same places (see Section 6). For instance, precision may be lost if the model or image
points are nearly collinear when computing the coefficients, a, b, and ¢, of the biquadratic. (In
Section 8.5, this is step 1 of Ullman’s solution.) Looking for a moment at Ullman’s computation
of a and ¢, it may appear that the computation is stable since there is no addition in Equation 54
or 56. In actuality, instability is hidden in the initial transformation that aligns the model and
image with the x axis.

Given s, Ullman computes the cosines of the angles § and ¢ and then implicitly uses
V1 —cos?0 and /T —cos? ¢ to get their sines. (This is step 4 of Ullman’s solution.) Ei-
ther sine could be inaccurate, however, if cos @ or cos ¢ is very close to one. Fig. 7 shows that
when this happens one of the vectors emanating from rfio is nearly parallel to the image plane.
When the rotation matrix R is computed, inaccuracy in the sines affects the elements r,3, r;3,
and ri3 (see Equation 49). Since r;3 is affected, when the solution is used to transform an
unmatched model point, the instability can propagate to points that lie in the plane containing
the three matched model points, which is not true for the solution in this paper (Section 6).

For Huttenlocher and Ullman’s method in Section 8.5, catastrophic cancellations may occur
in step 1 when /1y, &3, I21, and I33 are computed, in step 4 when &; and k; are computed, and

32




in step 8 when sR is computed. Instability in step 4 can affect ¢; and c; in Equation 49: If ¢, is
near zero, then k; and k; in Equation 66 also must be near zero. From Equations 63 and 64, k,;
and k; are computed with additions, and so cancellation can occur if they are small. Similarly,
if ¢z is near zero, k; must be small as well, and so again cancellation can occur. From Fig. 8, ¢,
or ¢z is nearly zero when one of the vectors emanating from the origin (7%) is nearly parallel
to the image plane.

When U4, U3, I21, and I3z are computed (Equations 58-61), the results will be inaccurate if
the determinant, #; ¥2 — £2%, is close to zero, which happens exactly when the model points are
almost collinear. In addition, if any of Iy, I3, I31, or l32 is almost zero, then cancellation can
occur in computing it. There are many pairs of model and image triples that can make one or
more of lyy, ly3, {33, {37 close to zero (e.g., l;3 ~ 0 whenever z; ~ #; and z; = Z3, independent
of y1, ¥2, %1, and 32). Furthermore, in step 8, the additions in computing sry3 and sr;3 can
also contribute to instability (see Equation 68). Note, however, that the image triangle being
nearly collinear does not necessarily make the computation unstable.

In Grimson et al.’s solution, instability may arise in step 5 if cos ¢ is almost 1, in step 6 if ¢
is 1 and w is close to £, and in step 7 if cos ¢ is near 1 or cos @ is near 1. As with the solution in
this paper, these situations occur when the model or image points are nearly collinear or when
one of the sides of the model triangle that emanates from g is nearly parallel to the image
plane. Like Ullman’s method and Huttenlocher and Ullman’s methods, however, instability can
propagate to points inside the plane of the matched model points (in step 7).

In sumnmary, each of the three previous solutions spreads instability in the pose solution
to points in the plane of the three matched model points; however, the solution in this paper
does not. Furthermore, the situations in which instability can arise are the same for Ullman’s
method, the method of Grimson et al., and the solution in this paper. Specifically, these
situations are when one of the vectors from niq is parallel to the image, when the model points
are nearly collinear, and when the image points are nearly collinear. Huttenlocher and Ullman’s
method is unstable in the first two situations as well, which is expected since in these situations
the problem is ill conditioned (Section 6). In addition, Huttenlocher and Ullman’s method can
be unstable in many cases where the other methods are not, but may be more stable in the
case that the image points are nearly collinear.

10 Conclusion

The weak-perspective three-point problem is fundamental to many approaches to model-based
recognition. In this paper, I illustrated the underlying geometry, and then used it to derive
a new solution to the problem and to explain the various special cases that can arise. In
particular, the times when there are zero, one, and two solutions are described graphically.

The new solution is based on the distances between the matched model and image points
and is used to recover the three-space locations of the model points in image coordinates. From
the recovered locations, a direct expression for the image location of a fourth model point is
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obtained. In contrast, earlier solutions computed an initial transformation that brought the
model into image coordinates, and then computed an additional transformation to align the
matched model points to their corresponding image points. As a result, the solution given here
should be easier to use, and, for recognition systems that repeat the computation of the model
pose many times, should be more efficient.

Another difference with the method presented here is that it makes evident the symmetry
of the solution with respect to the ordering of the model and image points. Previous methods
that are based on the coordinates of the points after some initial transformations make this
symmetry unclear.

Furthermore, this paper provides stability analyses for both the new and past solutions, none
of which had been analyzed for stability previously. Each computation is examined for places
where precision may be lost. From these places, the geometries that give rise to instabiliiy are
inferred. These geometries are used to distinguish instabilities that arise in situations where
the problem is ill conditioned, that is, situations where instability is inherent, from ones that
are due to the particular computation.

In giving another solution, this paper revisits Ullman’s original biquadratic equation for the
scale factor, but, in addition, goes on to interpret both solutions to the equation, and to prove
which one is correct. The false solution is shown to correspond to inverting the roles of the
model and image points.

Lastly, the new solution is accompanied by a proof that the solution exists and is unique.
Of the previous methods, only Huttenlocher and Ullman’s demonstrates this as well, and was
the first to do so. Such proofs may be useful for gaining insights into related problems as well
as the problem itself. Even so, since existence and uniqueness have been established, all the
solutions are valid, and should all be considered when a related problem needs to be solved.
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A Rigid Transform between 3 Corresponding 3D Points

This appendix computes a rigid transform between two sets of three corresponding points using
right-handed coordinate systems built separately on each set of three points. A right-handed
system is determined by an origin point, 6, and three perpendicular unit vectors, (4, v, ).
Given three points in space, o, P1, P2, We can construct a right-handed system as follows: Let
for = P — Po and foz = 3 — fo. Then let

5=

34




i = pn
) Poz — (Poz - Po1)Pm
w = UXT

Let (y; 61, 91, %)) and (&; ti, b2, W2) be the coordinate systems so defined for the original and

camera-centered points, respectively.

Given a coordinate system (&;,9,w), a rigid transformation that takes a point in world

coordinates to a point in that coordinate system is given by (R, t), where

R=[d % ¥, =4

(see for example [6]); the transformed pis Rf+{. Then we can bring a point 7 from the original

system to the world and then to the camera-centered system using
Ra (er(i"— 5.1)) +& =RaBy 75+ 5 - RaRy Ty

where

]

01

202_

Ri=[h & @, &
Rz =[i; B 1, ts
Consequently a rigid transformation (R,£) that ahgns the two coordinate systems is

R= R_.zRIT, t= t; — R3R1Tt1.

B Biquadratic for the Scale Factor
This appendix shows
4(s’ RS, - d3,)(s* Ry, — dg,) = (’Z(R;z - Ry - Ryy) — (dl; — d}y - '132))2

is equivalent to a biquadratic in s.
Expanding Equation 85,
4 (34331332 ~ 8% (R5,d3; + R3,dGy) + dgldgz) =
s*(R3, + Ry, — RY,)? - 28%(RS, + RY; — RY,)(d3, + d3; — d2)
+(d}; + d3; — d},)?
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st (4331332 ~(R3, + R, - 332)2)
-24? (2331432 + 2R3,dj, — (B3, + R3; — Rua)(dj, +dj; - dgz))
+ (4‘1(2)1“(2)2 ~ (d§; + d3; - diz)z) =0

as* — 2bs® + ¢ =0,

where

a = 4R}, R}, - (R§, + Rj, - R},)?

b 2R},d3; + 2R3, d5, — (RS, + Ry, — RY,)(d, + dj, — di,)

¢ = d4dydj; — (dy +dj; —df,)

i

C Two Solutions for Scale

This appendix proves Proposition 1. The proof uses the following lemama:
2 2
Lemma : Let f be either (ﬁ'{) or (ﬁ‘;) . Then

af?-2bf +c<o0. (86)
Proof:
af? - 26f +¢
= 4(Ro1Rozsing)’f? —

2 (2(531‘13: + R3;d5, — 2Ry Rozdordo; cos ¢ cos ¢)) f+
4(dg1dozsin9)?,  from Equations 24, 25, and 26

= 4 (B3R - cod’ §) 17~
(R3,d3; + R3;d3, — 2Ry Rozdo1dos cos pcos ) f +
B3 (1 - cos® ¥)) (87)

Suppose that f = (t‘;)2 Then 87 becomes

s (__ 332241 cos? ¢ + 2;%& cos ¢ cos Y — d3,d3; cos? '/’)

1
2
= —-4R},d3, (-;% cos § — %cou[:)
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Suprpose instead that f = (ﬁz‘—)2 Then 87 becomes

3
4 ( Rolzdaz cos? ¢ + 2}&)1‘102‘101 cospcosyP — d;‘;ldg, cos® P
Ry, Ro2

2
= -—4R3 d3, (-——2 cos ¢ — -;0—11 cos 11:)

Either way, af2 - 2bf + ¢ < 0.
0

Proposition 1:

Vb2 “ac . b+ Vb - ac
V 2=V———‘—--
a

Then

Proof: Starting from the result of the lemma,

af!—2bf+c<0

2 ((af ~ b7 - (# - ac)) <0

(af —b)* < b® —ac, sincea>0

laf — b < VB - ac

~(af-0)<Vb*-ac and af-b<Vb-ac
fzt____ Vi”“ and fséi'_______ "Z’"“‘
si<f<4

81< %;,%‘::— < 83
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D One Solution for Scale

In the “one solution” case, we wish to know when and if 6% — ac = 0 holds. Using the result of
Appendix 7, this means that

4(Rordes)* (87 ~ 2cos(p + )t +1) (£ ~ 2cos(¢ — )t + 1) = 0.
For this to hold, either
t? —2cos(@p+Y)t+1=0 or t2—2cos(¢—¥)t+1=0.
Solving for ¢ gives
t=cos(¢p+9)isin(¢+¥) or = cos(d— ) isin(¢— ), (88)

where i = /—1. Consequently, there are real values of ¢ that make 5* — ac = 0 only if
sin(¢ + ¢) = 0 or sin(¢ — ) = 0. These situations occur when ¢ = ++ and ¢ = +9¢ + .
Substituting into Equation 88 gives that > —ac = 0 iff both ¢ = +tpord = ¥y +x and t = 1,

— 13 — doa
wheret_llsthesameas‘%*;_nm.

E No Solutions for Scale

This appendix shows that there always exists a solution to the biquadratic by showing that
b — ac > 0. From Appendix F,

4(Rordoz)* (£ ~ 2cosld + )t +1) (£ — 2cos(p — )t +1)

4(Rondon)* (£ -2t +1) (£ - 2t +1)

4(Roydoa)*(t — 1)*
0

b? - ac

v

v

F Simplifying % — ac
In this appendix, I derive that
b ac = 4(Rordoa)* (£ - 2cos(d + ¥}t +1) (£ - 2cos(¢ - $)t +1), (89)

where

_ Rozda

t= Roydoz”
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From Equations 24, 25, and 26,
a = 4(RoyRozsin¢)®

c 4(do1do; sin 9)?

I

Then

¥ = 4(R3d}, — 4R3;d3, Rordoz cos ¢ cos ¥ + 2RY; Ry, df; +
4R, R},d5,d5; cos® p cos® ¥ — 4RG,d3; Roados cos pcos y + Ry dg,)

ac = 16R31R32d31d32 sin2 ¢ Sinz ¢

b*—ac = 4 (and(‘u — 4R3,d3, Rordo; cos ¢ cos P+
(2 + 4 cos? pcos? ¥ — 4sin® ¢sin® Y)R3, R3,d3,d3, —
4R5,dg, Roadoy cos cos ¢ + R(‘)ld(‘n)

= 4(Rordoz)* (t4 — 4 cos ¢ cos Yt° + (2 + 4 cos® pcos ¢ — 4sin® Psin® P)t—

_ Bozdnn
Ro1do2

= 4(Rodoz)* (t* - 2(cos(¢ + %) + cos( ~ ¥)) >+
(2 + 4 cos(@ + ¥) cos(d — ¥)) t* — 2(cos(¢ + ¥) + cos(¢ — ¥))t + 1)

4cospcosyt +1), where t

= 4(Rordea)* (7 — 2cos(¢ + ¥)t +1) (£ — 2cos(d — )t +1)
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